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Abstract 

Background:  The sanitary emergency installed in the world, generated by the pandemic of COVID-19, instigates the 
search for scientific strategies to mitigate the damage caused by the disease to different sectors of society. The dis-
ease caused by the coronavirus, SARS-CoV-2, reached 216 countries/territories, where about 199 million people were 
reported with the infection. Of these, more than 4 million died. In this sense, strategies involving the development of 
new antiviral molecules are extremely important. The main protease (Mpro) from SARS-CoV-2 is an important target, 
which has been widely studied for antiviral treatment. This work aims to perform a screening of pharmacodynamics 
and pharmacokinetics of synthetic hybrids from thymoquinone and artemisin (THY-ART) against COVID-19.

Results:  Molecular docking studies indicated that hybrids of artemisinin and thymoquinone showed a relevant 
interaction with the active fraction of the enzyme Mpro, when compared to the reference drugs. Furthermore, hybrids 
show an improvement in the interaction of substances with the enzyme, mainly due to the higher frequency of 
interactions with the Thr199 residue. ADMET studies indicated that hybrids tend to permeate biological membranes, 
allowing good human intestinal absorption, with low partition to the central nervous system, potentiation for CYP-
450 enzyme inhibitors, low risk of toxicity compared to commercially available drugs, considering mainly mutagenic-
ity and cardiotoxicity, low capacity of hybrids to permeate the blood–brain barrier, high absorption and moderate 
permeability in Caco-2 cells. In addition, T1–T7 tend to have a better distribution of their available fractions to carry 
out diffusion and transport across cell membranes, as well as increase the energy of interaction with the SARS-CoV-2 
target.

Conclusions:  Hybrid products of artemisinin and thymoquinone have the potential to inhibit Mpro, with desirable 
pharmacokinetic and toxicity characteristics compared to commercially available drugs, being indicated for preclinical 
and subsequent clinical studies against SARS-CoV-2. Emphasizing the possibility of synergistic use with currently used 
drugs in order to increase half-life and generate a possible synergistic effect. This work represents an important step 
for the development of specific drugs against COVID-19.
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Background
Coronavirus Disease (COVID-19), caused by the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
is responsible for causing acute respiratory incapacity, 
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which, if left untreated, can result in death [1–3]. The 
pathology first spread in Wuhan, China, and then 
became a world emergency and the start of a pandemic 
and threat to public health on 12/31/2019, according to 
the World Health Organization (WHO) [4]. Structurally, 
SARS-CoV-2 possesses a single strand of positive sense 
RNA as genetic material, which encodes structural capsid 
proteins, in addition to enzymes.

In this context, among different pharmacological tar-
gets currently being studied, the main protease (Mpro) 
stands out, which plays a fundamental role in viral rep-
lication. Mpro enzyme is activated after its autocleav-
age, generating two subunits [5]. Theoretical studies have 
identified a region of inhibition of the active fraction of 
the enzyme, characterized by the formation of a complex 
between Mpro and the ligand N3. This finding has con-
tributed to the prospection of new drugs in screening in 
silico [6].

Artemisinin (ART) is named by many authors as a gift 
from traditional Chinese medicine to the world. It is the 
major component of a plant called Artemisia annua and 
has been applied in the treatment of malaria and other 
diseases caused by protozoa from Plasmodium sp. genus 
[7]. Thymoquinone (THY) is the most abundant constit-
uent of Nigella sativa oil, characterized by having several 
pharmacological properties, such as anti-cancer, gastro-
protective, hepatoprotective and nephroprotective, all 
associated with its anti-oxidative, anti-inflammatory and 
immunomodulatory potential [8].

It has been previously described that ART and THY 
possess antiviral activity [9]. Recently, it was reported 
that bioactive compounds present in Nigella sativa seeds, 
including thymoquinone and dythimoquinone, were able 
to interact with SARS-CoV-2 spike protein:ACE2 recep-
tor interface [10]. THY also interacted with Mpro on in 
silico simulations [11]. Additionally, ART and its deriva-
tives presented cardioprotective effect in COVID-19 over 
ACE2 signaling pathway [12].

However, ART and THY present considerable toxicity, 
which can lead to hypoactivity and difficulty in breath-
ing [13], as well as neurotoxicity, embryotoxicity, geno-
toxicity, hemato and immunotoxicity, cardiotoxicity and 
allergic reactions [14]. The potential of thymoquinones to 
increase the antioxidant capacity of mice mesenchymal 
stem cells has also been described in the literature, favor-
ing their migration and inducing immunogenicity in vivo 
[9]. In order to maintain or increase their pharmacologi-
cal properties and, concomitantly, reduce their toxicity, 
hybridization techniques can be used, aiming the devel-
opment of compounds with better bioavailability and less 
toxic risk [15–17].

Therefore, the present study selected a series of mol-
ecules previously reported by Fröhlich et  al. [17], which 

consists of hybrids of THY, ART and its derivative artesu-
nic acid (ARA) [9]. These compounds were synthesized by 
structural modification of artesunic acid, through the addi-
tion of thymoquinone by decarboxylation. Previously, some 
of these molecules demonstrated antimalarial activity and 
effect against Human Cytomegalovirus (HCMV) in  vitro. 
Therefore, this work aims to perform a theoretical screen-
ing of pharmacodynamics and pharmacokinetics of these 
molecules on SARS-CoV-2 main protease (Mpro).

Methods
Computational details
All simulations were performed using free codes for aca-
demic use in a 64-bit operating system. The codes were 
used: Pymol [18], UCSF Chimera™ [19], Autodocktools™ 
[20], AutoDockVina™ [21], Avogadro™ (http://​avoga​dro.​
cc/) [22], Discovery studio visualizer™ viewer [23] e Mar-
vin™ 19.8, 2020, (http://​www.​chema​xon.​com) [24].

Obtaining and optimizing molecular structures
The molecular structures of THY, ART, ARA and hybrids 
(T1–T7) were obtained from the study by Fröhlich et  al. 
[17] (Fig. 1). As control ligands, anakinra (ANK) (PubChem 
CID: 139595263), azithromycin (AZT) (PubChem CID: 
447043), baricitinib (BRT) (PubChem CID 44205240), 
chloroquine (CLQ) (PubChem CID: 2719) and remdesivir 
were used (RDS) (PubChem CID: 121304016) (Fig.  2). In 
addition, the results were compared to those obtained for 
the enzyme inhibitor, peptide N3 (PRD_002214), which is 
covalently bound with Cys145 residue [25].

The molecules were designed using the MarvinSketch® 
academic license software version 20.13 [24] from the 
ChemAxon© Marvin software package (https://​chema​xon.​
com/​produ​cts/​marvin). The three-dimensional structure 
of the selected compounds was optimized using the clas-
sic force field method MMFF94 (Merck Molecular Force 
Field 94) [26], implanted in the free Avogadro® software 
[22], programmed to perform a cycle of 4 interactions 
of the Steepest Descent algorithm, following the param-
eters defined in Eq. (1), where the most stable structure is 
obtained by minimizing the potential energy (E) of a mol-
ecule in its steady state, with the contribution of a force 
(kb) exerted on a bond between two atoms (r − r0) and the 
sum includes all bonds of the molecule’s three-dimensional 
space [27].

General Docking procedures
The crystallographic structure of the Mpro enzyme of 
COVID-19 conjugated to N3 was obtained from Pro-
tein Data Bank (https://​www.​rcsb.​org/), where it was 

(1)E =

∑
kb(r − r0)
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deposited with the PDB ID code 6LU7, and is composed 
of three domains: domain I (residues 8–101), domain II 
(residues 102–184) and domain III (residues 201–303), 
in addition to a long loop (residues 185–200) linking 
domain II to domain III [6].

Molecular Docking simulations and Re-docking were 
performed using AutoDockVina Version 1.1.2 [28]. 
For each analysis, 100 cycles of 10 independent simu-
lations were performed applying Lamarkian Genetic 
algorithm [22, 23]. Mpro SARS-CoV-2 remaining 

Fig. 1  Structural formula of parental ligands artemisinin, artesunic acid and thymoquinone and synthetic hybrids from artemisinin–thymoquinone 
T1–7. Adapted from Fröhlich et al. 2018 [17]



Page 4 of 20de Oliveira et al. Futur J Pharm Sci           (2021) 7:185 

Fig. 2  Anti-SARS-COV-2 structural formula drugs used as control ligands. A Anakinra, B azithromycin, C baricitinib, D chloroquine e E remdesivir. 
Adapted from PubChem
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parameters were set as standard. For Mpro SARS-
CoV-2 were used 3-way multithreading and the follow-
ing parameters: center_x = − 26.734, center_y = 13.009, 
center_z = 56.185, size_x = 94, size_y = 112, size_z = 108, 
spacing = 0.642 [29]. Non-protein molecules were 
removed, and polar hydrogen were added using Auto-
Dock Tools 1.5.6 software (ADT, http://​mglto​ols.​scrip​ps.​
edu/) [30].

Following the methodology proposed by Marinho et al. 
[31], 50 independent simulations were carried out with 
20 poses each using the same Exhaustiveness criteria 8. 
At the end of the coupling simulations, several ligand 
binding energies were obtained with their respective con-
formations; the stable conformation, which corresponds 
to the lowest energy connection, was chosen as the best 
pose and was used in the docking analysis. The bonding 
energies were calculated using Eq. (2).

were ∆G is the binding free energy in KJ mol−1, R is the 
gas constant, 8.32 J mol−1 K−1 and T is the absolute tem-
perature, 298 K.

To validate the simulations, Redocking procedures 
were performed, and the RMSD (root-mean-square devi-
ation) values were evaluated within the ideal parameter, 
less than 2 Å [32] affinity energy was used as a parame-
ter, with ideality parameters values below − 6.0 kcal/mol 
[30].

Physicochemical, pharmacokinetic and toxicity properties
The molecular mass (MW), rotating bonds (RB), number 
of H-bond acceptors and donors (HBA and HBD) and the 
topological polar surface area (TPSA) of the molecules 
were calculated using MarvinSketch® software version 
20.13 (ChemAxon© https://​chema​xon.​com/​produ​cts/​
marvin) [16, 27]. The partition coefficient (log P) and 
water solubility at pH 7.4 (log S) were calculated using 
the preADMET server (https://​pread​met.​bmdrc.​kr/) 
[33].

Aiming to trace a prediction of the validation of 
hybrids as candidates for drugs intended for oral admin-
istration, the druglikeness criteria of Lipinski’s ’rule of 5′ 
[34], which classifies a compound as a good candidate for 
oral use that does not violates more than 1 of the follow-
ing criteria: MW ≤ 500  g/mol, log P ≤ 5, HBA ≤ 10 and 
HBD ≤ 5.

The pharmacokinetics of the compounds were esti-
mated by predictive parameters of absorption, distri-
bution, metabolism and excretion (ADME) at pH 7.4 
through the preADMET server (https://​pread​met.​
bmdrc.​kr/). The following were evaluated: human intes-
tinal absorption (HIA) [35]; permeability through the 
intestinal epithelium, using the Caco-2 model [30, 32]; 

(2)G = −RTLnK

plasma protein binding (PPB) [36]; permeability through 
the blood–brain barrier (BBB) [29, 33]; and interaction 
with cytochrome P450 (CYP450) enzymes. The toxicity 
parameters analyzed were: mutagenicity and carcino-
genicity, both using the Ames test [37]; and cardiotoxic-
ity, by inhibition of the hERG potassium channel (Human 
Ether-a-go-go-Related Gene).

The identification of potentially pharmacophores was 
performed by testing the similarity of QSAR (quantitative 
structure–activity relationship) models from the Pred-
hERG online server, LabMol (http://​predh​erg.​labmol.​
com.​br/), generating a 2D visualization probability map.

Results
Molecular docking
Figure  3 shows the interactions analyzed by molecular 
docking. When the ligands were compared regarding 
their interactions with Mpro, it was possible to separate 
them into two distinct groups (Fig.  3A) (black squares). 
It was observed that T6 and T7 belong to the same group 
of AZT, ART and BRT, while T1–T5 belong to the group 
of RDS, ANK, ARA and THY. It is also noteworthy the 
presence of false positivity found for the relationship 
between CLQ and T7, given the distance between the 
sites of activity of these two ligands. Figure 3B shows the 
interaction between Apro de Mpro residues to identify 
conserved residues of importance for enzymatic activ-
ity, identified by the orange arrow. Of these, waste K137, 
T199 and L287 stand out. In addition, it was observed 
that the residues that interact with BRT and N3 are iso-
lated from the other.

Figure  3C shows the general interaction between 
ligands and residues, with emphasis on the different 
interaction sites for each group. Thus, the approximation 
of the substances T1–T5 to the sites of ANK and RDS is 
ratified, while T6–T7 approaches the sites AZT and BRT. 
Once again, this figure shows that CLQ did not interact 
in a relevant way with the Aspro residues of Mpro, indi-
cating that it is not an inhibitor of this enzyme.

The data demonstrate that ANK, AZT, BRT and RDS 
occupied the same catalytic site of Mpro, in a different 
site from that occupied by the N3 inhibitor (Fig. 4). ANK, 
AZT and BRT form regions of strong hydrogen interac-
tion with the Thr199 residue, while RDS forms a region 
of slightly strong hydrogen interaction with Leu287.

When hydrogen interactions and bond distances 
involving control ligands are analyzed (Fig. 5), it is con-
firmed that CLQ interacts weakly with a site distinct 
from other substances. Table  1 shows that, among the 
control ligands, CLQ has the highest interaction energy, 
in an energy order of − 4.7 kcal/mol.

Additionally, still in Table 1, it is possible to notice that 
the parental compounds ARA and THY occupy the same 

http://mgltools.scripps.edu/
http://mgltools.scripps.edu/
https://chemaxon.com/products/marvin
https://chemaxon.com/products/marvin
https://preadmet.bmdrc.kr/
https://preadmet.bmdrc.kr/
https://preadmet.bmdrc.kr/
http://predherg.labmol.com.br/
http://predherg.labmol.com.br/
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catalytic site as most control ligands, highlighting inter-
actions in common with Tyr239 and Thr199 residues. 
ARA forms a hydrogen bond with the Tyr239 residue, 
with a strong contribution from the ester group attached 
to the hexacyclic ring, while THY binds to the resi-
due with contribution from the carbonyl bonded to the 
unsaturated hexacyclic ring. Furthermore, ARA presents 
an interaction with Thr199 of similar intensity to that of 
AZT, which presents a distance of 3.04 Å.

In addition, ART interacts with Lys102 through the 
hydrogen bonding carbonyl receptor connected to the 
hexacyclic ring. This being the only one among the paren-
tal ligands used in the structural modification to interact 
with this catalytic site, presenting a minimum affinity 

energy of − 6.2 kcal/mol. The results of the present work 
demonstrate that the hydrogen bond formed between 
ART and Lys102 presented a bond distance of about 2.5 
Å < d < 3.1 Å, which represents a region of strong inter-
action [38]. In Fig. 6, hydrogen interactions and bonding 
distances of parent compounds are illustrated, allowing 
for better visualization.

When the interactions of the artemisinin–thymo-
quinones hybrids were analyzed, it was found that they 
showed improvement in the interaction of the substances 
with the enzyme, as shown in Fig.  7. The results allow 
observing the higher frequency of interactions with 
the Thr199 residue associated with T1–T4 substances, 
with a strong contribution of oxygen from the hydrogen 

Fig. 3  Drug interaction sites used as control ligands identified by molecular docking. In the figure, Mpro SARS-COV-2 is presented docked with A 
N3 inhibitor; B chloroquine, C control ligands; D anakinra, E azithromycin, F baricitinib e G remdesivir
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bonding esters of the ligands T1, T3 and T4, and oxy-
gen from the hexacyclic structure of T2. The T5 ligand, 
on the other hand, interacts with the Tyr239 residue, 
which is frequent between the parent ligands artesunic 
acid and thymoquinone. It is worth mentioning that the 
substances are bound to the Thr199 residue by hydrogen 
bonds of the donor-recipient type, where the distances 
follow an order of 2.5 Å < d < 3.1 Å, generating a region 
of strong interaction and with energy balance that varies 
from − 8.3 to − 7.5 kcal/mol (Fig. 7) [38].

Additionally, the T6–T7 ligands showed peculiarities in 
comparison with the other hybrids. The T6 ligand is the 

only one of the hybrid ligands to couple at the same site 
as chloroquine, interacting with the Ser158 residue by 
hydrogen bonding, as well as the substance artemisinin 
(Fig.  6A). This interaction takes place through one of 
the oxygen grouped to the cyclic structure as shown in 
the map in Fig.  4. It is possible to highlight the hydro-
gen interaction of the T6 ligand to the Ser158 residue 
as a region of strong ligand–receptor interaction, with 
distance calculated in the order 2.5 Å < d < 3.1 Å and the 
affinity energy evaluated at − 8.3  kcal/mol, which is the 
lowest among the ligands in the study, resulting in their 
best thermodynamic conditions of interaction (Figs. 8, 9).

Fig. 4  Heatmap representation of binding between Mpro and ligands. A Pearson’s similarity test for ligands analyzed on this study; B Pearson’s 
similarity test between Mpro amino acid residues; C interactions between ligands and Mpro residues. AZT (azithromycin); BRT (baricitinib); RDS 
(remdesivir); ANK (anakinra); CLQ (chloroquine); ART (artemisin); ARA (artemisin acid); THY (thymoquinone). For interpretation, the range varies 
from − 1 (blue) to + 1 (red), where red indicates stronger and closer interactions, while blue indicates weak and distant interactions
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Fig. 5  2D map representative of H-bonds between control ligands and Mpro SARS-CoV-2. A Anakinra, B azithromycin, C baricitinib, D chloroquine 
e E remdesivir
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The ligand T7 forms a series of weak interactions at the 
catalytic site where most of the ligands in this study are 
found. Probably, the T7 ligand was captured by the cata-
lytic site with binding energy strong enough to maintain 
it despite its weak individual interactions. Figure 8 illus-
trates the diversity of these interactions, highlighting T6 
and T7 as promising ligands to the enzyme Mpro. The 
diversity of sites of interaction with the enzyme stands 
out when comparing artemisinin and T6 with Artesu-
nic acid, thymoquinone, T1–T5 and T7, in addition to 
the N3 inhibitor, demonstrating that the interactions of 
parental ligands and hybrids with the enzyme present a 
pattern similar to that observed by the control ligands.

Physicochemical and drug‑likeness properties
The physical–chemical properties of the compounds ana-
lyzed in the present study are listed in Table 2. Based on 
the criteria defined by the “rule of five” from Lipinski, 
the T6 ligand was the only hybrid of structural modifi-
cations within the physicochemical space defined by the 
four limits (MW ≤ 500  g/mol, log P ≤ 5, HBA ≤ 10 and 
HBD ≤ 5), while the ligands T2, T5 and T7 obtained 
a double violation of the type MW > 500  g/mol and log 
P > 5 [34]. However, T1–T7 hybrids are within the phys-
icochemical compound space of Pfizer, Inc., (low rela-
tive logP and high TPSA), satisfying the pharmacokinetic 
attributes: high permeability, low risk of passive efflux 
and low metabolic clearance, as well as safety parame-
ters, ensuring a low toxic risk by oral administration [39] 
while ANK, AZT and RDS have their oral bioavailability 
and pharmacokinetic attributes limited by exceeding the 
physicochemical safe space established by the "rule of 
five" criteria.

The structural modifications of the T1–T7 hybrids 
caused a reduction in their solubility coefficients com-
pared to parental ligands, with emphasis on the sub-
stances T1–4 and T6, with solubility values less than 
0.01  M. These findings are strongly associated with the 
values of log P, which are increased in hybrids, char-
acterizing these molecules as essentially fat-soluble 
and, consequently, susceptible to dissolve in the lipid 
bilayer of most cell membranes. In addition, this pat-
tern is evidenced in the hydrophobicity map illustrated 
in Fig. 10, in which the regions of interaction vary from 
lipophilic environments (blue) to hydrophilic environ-
ments (brown). In general, these log P values were also 
increased in comparison with the control ligands, except 
for CLQ, which has lipophilicity similar to hybrids.

Pharmacokinetic and toxicological study
The pharmacokinetic and toxicological prediction data 
are shown in Table 2. The lipophilicity and polarity pro-
files shown demonstrate the ability of the T1–T7 hybrids 

Table 1  Interactions, distances and energy parameters of 
ligands in molecular docking with Mpro SRAS-CoV-2

AZT azithromycin, BRT baricitinib, RDS remdesivir, ANK anakinra, CLQ 
chloroquine, ART​ artemisin, ARA​ artemisin acid, THY thymoquinone

Compound 
name

ΔG (kcal/
mol)

Hydrogen bonding

Atom of 
ligand

Amino acid Distance (Å)

Parental ligands

ART​ − 6.2 O sp2 Lys102 2.96

ARA​ − 6.7 O sp2 Arg131 3.02

O sp2 Thr199 2.88

O sp2 Thr199 3.16

O sp3 Asn238 3.12

O sp2 Tyr239 2.90

THY − 4.08 O sp2 Tyr239 3.11

Artemisinin–thymoquinone hybrids

T1 − 7.6 O sp2 Lys137 2.96

O sp2 Thr199 2.94

O sp3 Tyr239 3.15

T2 − 7.5 O sp2 Lys137 3.04

O sp3 Thr199 2.93

T3 − 8.3 O sp3 Lys137 3.02

O sp2 Lys137 3.06

O sp2 Lys137 3.29

O sp2 Thr199 2.86

O sp3 Thr199 3.05

O sp3 Thr199 3.17

O sp2 Asn238 2.94

O sp3 Tyr239 3.08

T4 − 7.7 O sp3 Thr199 2.88

O sp2 Asn238 3.17

T5 − 7.8 O sp2 Asp197 3.31

O sp3 Asn238 2.94

O sp3 Tyr239 2.09

T6 − 8.3 O sp3 Ser158 2.97

T7 − 7.7 – – –

Control-ligands

ANK − 6.2 N sp2 Lys137 3.35

O sp3 Thr199 2.85

O sp2 Thr199 2.93

N sp3 Glu290 3.04

AZT − 6.9 O sp3 Thr199 3.04

O sp3 Tyr237 3.85

BRT − 6.8 N sp2 Thr199 3.10

N arm Leu287 3.10

CLQ − 4.7 – – –

RDS − 6.8 O sp3 Arg131 3.06

N sp3 Asp197 3.31

Asn238 3.15

Tyr239 3.20

Leu287 3.14

Asp289 2.85
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Fig. 6  2D map representative of H-bonds between parental ligands and Mpro SARS-CoV-2. A Artemisinin, B artesunic acid, C thymoquinone
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Fig. 7  2D map representative of H-bonds between ART-THY hybrids. A T1, B T2, C T3, D T4 e E T5
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to penetrate the various biological membranes. In this 
prediction, the apparent permeability (Papp) of the colo-
rectal adenocarcinoma cell model (Caco-2) of the T1–T3 
hybrids below 30 nm/s (Papp < 3 × 10−6 cm/s) as well as 

of the T4–T7 hybrids, where the Papp coefficients are 
greater than 30  nm/s (Papp > 3 × 10−6 cm/s), show their 
potential permeabilities in the intestinal epithelium, 
where human intestinal absorptions (HIA) are lower 
than 97.5% for the first class, and greater than 99% for 
the second class [40]. In general, these values were higher 
than those found for the control ligands (less than 70%), 
except for the assessed absorptions of CLQ (98.05%) and 
BRT (93.54%).

As for plasma protein binding (PPB), parental ligands 
showed, in general, high percentage values. In this con-
text, THY stands out, which showed an estimated inter-
action of 100% of its concentration with plasma proteins, 
thus presenting an easier distribution in hybridization 
formed with ART. The PPB values found for the hybrids 
were higher than those found for the control-ligands, of 
which only CLQ showed a value of 92.53%; AZT has a 
PPB of 14.49%.

When the permeability in the blood–brain barrier 
(BBB) was estimated through the Cbrain/Cblood ratio of 
the modified chemical entities, an attempt was made to 
predict the concentration of species in their steady state 
in the brain and peripheral blood. In the present work, 
all hybrids showed values of BBB < 0.1, indicating a low 
passage of these compounds to the central nervous sys-
tem (CNS). Highly, among the parental ligands, ARA 
presented BBB exactly equal to 0.1, while ART and THY 
both had values greater than 1.0. When this parameter 
was evaluated among the control-ligands, CLQ presented 
the highest BBB value in the study (7.73), while all the 
others presented low passage (BBB < 0.1), highlighting 
BRT which presented the lowest value (< 0.01).

Table  3 lists the characteristics related to metabolism 
prediction of hybrids, parental and control compounds. 
When interactions with CYP450 metabolizing enzymes 
were evaluated, it was observed that T1–T7 products are 
potential inhibitors of CYP3A4 and CYP2C9, as well as 
observed for parent compounds. At the same time, AZT, 
BRT and CLQ, which have been indicated as a potential 
substrate for metabolism by CYP3A4.

Finally, Table 4 presents the data related to the predic-
tion of toxicity of the molecules evaluated in the pre-
sent study. It was observed that none of the hybrids was 
positive in the test for mutagenicity, in contrast to that 
observed for ANK, BRT and CLQ. Regarding carcino-
genicity, conflicting results were obtained, since the T1–
T5 molecules were positive for carcinogenicity in rats 
and negative in mice. Additionally, the results of inhibi-
tion of the hERG channel indicate the low risk of cardiac 
toxicity of the T1–T7 hybrids, in contrast to the data 
observed for BRT and CLQ. This trend is structurally 
observed, as the evaluated QSAR models indicate that 
synthetic substances have a 50–60% probability of the 

Fig. 8  2D map representative of H-bonds between ART-THY hybrids. 
A T6 e B T7
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cardiotoxic effect being weak or moderate. The probabil-
ity map in Fig. 11 shows that positive structural contribu-
tions govern most of the molecular surface of the T1–T5 
hybrids, where the negative contributions associated with 
their carbonyl groups do not pose a cardiotoxic risk. This 
observation is conflicting in the T6–T7 hybrids, where 
negative pharmacophores are predominant on their 
molecular surfaces, with a strong contribution from the 
carbonyls of the THY fragment and the oxygen atoms of 
the ART fragment, which may have a cardiotoxic effect. 
This observation is easily related to the hydrogen inter-
actions between the ligands and the Mpro SARS-CoV-2 
receptor, where the carbonyl group is a pharmacophore 
that constitutes a nucleophilic region of strong interac-
tion between the T1–T3 hybrids with the N+H group 
from the Lys137 residue, as with the T4 hybrid to the 
Asn238 residue and the T5 hybrid to the Asp197 residue. 
A special case happens with the T6–T7 hybrids, where 

the absence of the ester carbonyl groups makes them less 
susceptible to hydrogen interactions.

Discussion
In the present work, it was demonstrated that the hybrids 
of artemisinin and thymoquinone showed relevant inter-
action with the active fraction of Mpro enzyme, when 
compared with reference drugs. Furthermore, hybrids 
show an improvement in the interaction of substances 
with the enzyme, mainly due to the higher frequency of 
interactions with Thr199 residue. When analyzing the 
physical–chemical properties, it is suggested that hybrids 
tend to permeate biological membranes, allowing for 
good human intestinal absorption and with a low parti-
tion to central nervous system. Additionally, the hybrids 
presented themselves as potential inhibitors of CYP-450 
enzymes. Finally, none of the hybrids tested positive for 
mutagenicity and had a low risk of cardiac toxicity.

Fig. 9  Representation of the interaction of hybrids T6 and T7 as molecules with Mpro SARS-CoV-2
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Theoretical screening studies of pharmacodynam-
ics and pharmacokinetics of synthetic hybrids of arte-
misinin–thymoquinone with the main protease (Mpro) 
of SARS-CoV-2 are relevant when aiming to validate 
their pharmacological activities for the treatment of 
COVID-19. Several studies describe a better applicabil-
ity of molecular docking assays using Mpro as a target 
to potential molecules against SARS-CoV-2, conferring 
greater specificity when compared to studies involving 
other enzymes, such as chymotrypsin-like cysteine pro-
tease (3CLpro) [5] or NSP10/NSP16 methyltransferase 
complex [41], used in some studies but belonging to 
other types of coronavirus.

In the present work, the molecules that showed the 
most promising results interacted with Mpro at Thr199 
amino acid, a different site from that described for the N3 
inhibitor, which binds covalently with a Cys145 residue 
[6]. These findings are important on redirecting of drugs, 
because from the definition of pharmacophores, it is pos-
sible to outline which regions of the receptor are available 
for efficient binding [25]. The results of in silico studies 
are evaluated under validated parameters. The N3 com-
plex was used as a standard inhibitor of Mpro in molecu-
lar docking studies corroborating previous data showing 

that the complex is stabilized by multiple hydrophobic 
interactions and hydrogen bonds. However, pharmacoki-
netic analyzes show N3 hepatotoxicity and carcinogenic-
ity, confirming the need for other molecules capable of 
binding to Mpro [42].

In this sense, the hybrids and parental compounds 
showed characteristics of interaction with the enzyme 
comparable to those of the control ligands. These com-
parisons are particularly important for the parameteri-
zation and validation of in silico studies. For example, in 
the work devised by Imberty et al. [38] in which molecu-
lar modeling of protein–carbohydrate interactions was 
performed, relative values for changes in free energy 
corresponding to the oxygen atoms involved in hydro-
gen bonds are described, as well as the strength of these 
bonds based on the distance of the interaction. In their 
results, the authors describe, for example, interactions 
with TYR residues in the order of 3.0 Ǻ as strong, corrob-
orating the findings for the hybrids in the present study 
[38].

However, among the control-ligands, it is important 
to highlight the results obtained for chloroquine. This 
drug, which has been used for decades to treat malaria 
and immune system diseases, came into evidence by 

Table 2  Physicochemical and pharmacokinetic properties of ART-THY hybrids, parental and control compounds

AZT azithromycin, BRT baricitinib, RDS remdesivir, ANK anakinra, CLQ chloroquine, ART​ artemisin, ARA​ artemisin acid, THY thymoquinone

Compound MW (g/mol) N.RB N.HBAs N.HBDs Physicochemical properties Pharmacokinetics

TPSA at 
pH 7.4 
(Å2)

Lipophilicity Water 
solubility at 
pH 7.4

Absorption Distribution

log P log S mol/L HIA (%) PCaco-2 (nm/s) PPB (%) BBB 
(Cbrain/Cblood)

Parental ligands

ART​ 282.33 0 5 0 53.99 1.68 − 2.69 0.0020 96.31 30.32 93.36 1.30

ARA​ 384.42 5 8 1 103.35 1.70 − 1.62 0.0238 83.94 13.21 90.61 0.01

THY 164.20 1 2 0 34.14 2.51 − 2.66 0.0021 99.28 23.03 100.00 1.78

Artemisinin–thymoquinone hybrids

T1 588.69 11 10 0 123.66 4.69 − 6.69 0.0076 97.00 21.18 93.30 0.02

T2 602.71 12 10 0 123.66 5.15 − 7.00 0.0037 97.52 24.18 94.30 0.03

T3 574.66 10 10 0 123.66 4.24 − 6.38 0.0002 96.42 22.11 92.79 0.02

T4 530.65 8 8 0 97.36 4.79 − 6.83 0.0001 99.10 36.05 93.54 0.07

T5 544.68 9 8 0 97.36 5.24 − 7.13 0.0225 99.30 40.17 94.56 0.06

T6 488.61 6 7 0 80.29 4.90 − 6.53 0.0005 99.12 46.47 96.20 0.06

T7 502.64 7 7 0 80.29 5.36 − 6.84 0.0775 99.12 49.14 98.43 0.09

Control-ligands

ANK 509.55 10 9 3 176.34 1.83 − 3.37 0.0004 46.52 17.57 87.45 0.04

AZT 748.996 7 13 5 182.48 2.45 − 3.33 0.0004 69.32 31.40 14.49 0.06

BRT 371.42 4 6 1 120.56 0.40 − 0.14 0.7179 93.54 3.08 78.87 0.00

CLQ 319.88 8 3 1 30.61 4.53 − 4.59 0.0095 98.05 56.61 92.53 7.73

RDS 602.585 14 9 4 203.55 1.71 − 3.18 0.0006 53.50 3.26 81.26 0.04
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Fig. 10  Surface map of ART-THY parental and hybrid compounds with Mpro. A Artemisin; B artesunic acid; C thymoquinone; D T1; E T2; F T3; G T4; 
H T5; I T6; J T7
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Table 3  Metabolism prediction of ART-THY hybrids, parental and control compounds

CYP450 cytochrome P450, AZT azithromycin, BRT baricitinib, RDS remdesivir, ANK anakinra, CLQ chloroquine, ART​ artemisin, ARA​ artemisin acid, THY thymoquinone

Compound name CYP450 inhibition CYP450 substrate

CYP2C19 CYP2C9 CYP2D6 CYP3A4 CYP2D6 CYP3A4

Parental ligands

ART​ No Inhibitor No Inhibitor No Substrate

ARA​ No Inhibitor No Inhibitor No Substrate

THY Inhibitor Inhibitor No Inhibitor No Substrate

Artemisinin–thymoquinone hybrids

T1 Inhibitor Inhibitor No Inhibitor No Substrate

T2 Inhibitor Inhibitor No Inhibitor No Substrate

T3 Inhibitor Inhibitor No Inhibitor No Substrate

T4 No Inhibitor No Inhibitor No Substrate

T5 Inhibitor Inhibitor No Inhibitor No Substrate

T6 No Inhibitor No Inhibitor No Substrate

T7 No Inhibitor No Inhibitor No Substrate

Control-ligands

ANK No No No No No Weakly

AZT No No Inhibitor Inhibitor Weakly Substrate

BRT No No No No No Substrate

CLQ No No Inhibitor No Substrate Substrate

RDS No No No Inhibitor No Weakly

Table 4  Carcinogenicity and mutagenicity of AMES test and hERG inhibition prediction for the ART-THY hybrids, parental and control 
compounds

AZT azithromycin, BRT baricitinib, RDS remdesivir, ANK anakinra, CLQ chloroquine, ART​ artemisin, ARA​ artemisin acid, THY thymoquinone

Compound name Mutagenicity (Ames test) Carcinogenicity hERG inhibition

Mouse Rat

Parental ligands

ART​ Mutagen Negative Positive Low risk

ARA​ Non-mutagen Negative Positive Low risk

THY Mutagen Positive Positive Low risk

Artemisinin–thymoquinone hybrids

T1 Non-mutagen Negative Positive Low risk

T2 Non-mutagen Negative Positive Low risk

T3 Non-mutagen Negative Positive Low risk

T4 Non-mutagen Negative Positive Low risk

T5 Non-mutagen Negative Positive Low risk

T6 Non-mutagen Negative Negative Low risk

T7 Non-mutagen Negative Negative Low risk

Control-ligands

ANK Mutagen Positive Negative Ambiguous

AZT Non-mutagen Negative Negative Ambiguous

BRT Mutagen Negative Negative Medium risk

CLQ Mutagen Negative Positive Medium risk

RDS Non-mutagen Negative Negative Ambiguous
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inhibiting the replication of SARS Cov-2 in  vitro [43]. 
However, in the past, chloroquine had already shown 
activity in vitro against several viruses, but without suc-
cess in animal models or in the treatment of viruses in 
humans [44, 45]. In the analysis carried out in the pre-
sent study, CLQ did not show any relevant interaction 
with the enzyme target, interacting weakly in a differ-
ent site from the other substances. In addition, CLQ 
has high lipophilicity, with outstanding permeation 
and absorption capacity in the intestine, being widely 
distributed, due to its high binding to plasma proteins 
and functioning as a potential substrate for metabolism 
by CYP3A4. These data suggest a good bioavailability, 
however, CLQ presented the highest BBB value in the 
study, indicating potential for toxicity in the central 

nervous system. In addition, this drug showed consid-
erable mutagenic potential and risk of cardiac toxicity.

In fact, chloroquine and hydroxychloroquine are widely 
used in long-term treatments. However, related cardiac 
disorder is a rare but severe adverse event, which can lead 
to death. Nevertheless, there is a lack in the literature 
related to randomized controlled trials and observational 
studies. Among the side effect reported, conduction dis-
orders were the main ones. Other non-specific adverse 
cardiac events included ventricular hypertrophy, hypoki-
nesia, heart failure, pulmonary arterial hypertension and 
valvular dysfunction [46, 47].

Previous studies using molecular dynamics simulations 
for the interaction of phenolic compounds and deriva-
tives with Mpro showed that the RMSD values of Mpro 
remained constant when the simulations were carried 
out with the bound and unbound complex, strengthen-
ing the hypothesis of the high stability of the complexes 
[42]. Several other studies have been looking for potential 
active phytochemicals against the Mpro protein, as an in 
silico molecular dynamics study simulating the interac-
tion of phenolic compounds carried out for a simulation 
period of 50 ns showed stability of these phytochemicals 
anchored in the Mpro binding region, associating these 
findings with the presence of hydrogen bonds since the 
free-bonding energy analysis, evaluated through the Pois-
son–Boltzmann surface area (MM-PBSA) shows that 
the van der Waals energy component has less effect on 
the bonding affinity. All these findings are correlated 
with the fact that the radius of rotation of protein–
ligand complexes supports their condensed architecture 
as well as their size [48]. However, there are no data in 
the literature that perform these analyzes directly with 
thymoquinones.

Among the hybrids of the present study, a low toxicity 
is predicted in comparison with the commercially avail-
able drugs, considering mainly mutagenicity and car-
diotoxicity. In addition, regarding their pharmacokinetic 
characteristics, it is known that most drugs intended for 
oral administration are lipophilic and gradually dissolved 
in the gastrointestinal tract fluid [49]. Together, this 
information reinforces a possible applicability of hybrids 
for subsequent pre-clinical and clinical studies.

Additionally, it is known that molecules with high 
lipophilicity tend to have a high volume of distribution, 
with low accumulation in the plasma compartment. This, 
associated with the high rate of binding to plasma pro-
teins, dramatically reduces the fraction of free drug in the 
plasma, decreasing its speed of hepatic and renal clear-
ance. Thus, it is expected that these molecules have a 
long half-life, which improves their use orally by reduc-
ing the daily number of administrations [50]. This data, 
associated with the low capacity of hybrids to permeate 

Fig. 11  hERG blocking probability map of parental and hybrid 
compounds (pharmacophore). Positive (green) and negative (pink) 
structural contributions of T1–T7 hybrids
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the blood–brain barrier, gives hybrids the prevention of 
the occurrence of adverse effects related to the arrival of 
these substances in the central nervous system [51].

These findings are compatible with the evaluation of 
the absorption of molecules in the human intestine (HIA) 
and the evaluation of the permeation of Caco-2 cells, 
concluding that the hybrids are compounds with high 
absorption and moderate permeability in Caco-2 cells, 
which can vary from 20 to 70% [52, 53]. This informa-
tion is associated with the obtained log P values, indicat-
ing that these molecules may have the ability to penetrate 
cells and, consequently, have direct contact with the tar-
get enzyme [54].

In addition, T1–T7 tend to have a better distribution of 
their available fractions to carry out diffusion and trans-
port across cell membranes, as well as increase the energy 
of interaction with the SARS-CoV-2 target. It is impor-
tant to mention that only the fraction of the drug not 
bound to plasma proteins is easily subject to these series 
of interactions described here [36]. In the present study, 
it was observed that the substances T1–T7 are strongly 
bound to plasma proteins, but with a fraction available to 
interact with the SARS-CoV-2 target compared to THY, 
which showed an estimated protein binding of 100%.

Regarding the metabolization of the studied hybrids, an 
affinity with CYP3A4 and CYP2C9 enzymes is observed, 
as well as for the parent compounds. This indicates the 
possibility of drug interactions, causing a reduction in the 
rate of metabolism of drugs such as AZT, BRT and CLQ, 
which were also indicated as a substrate for metabolism 
by CYP3A4. This information suggests the possibility of 
an association between the hybrids and one of the drugs 
mentioned, in order to increase the half-life and generate 
a possible synergistic effect [55].

Considering drug metabolism by CYP3A4, an enzyme 
that promotes reactions such as hydroxylation, aro-
matic and heteroatom oxidation, in addition to N- and 
O-dealkylations, the emergence of drug interactions 
with several drugs used for a variety of diseases is pos-
sible. However, considering the desired application for 
the treatment of COVID-19 infection, the use of the mol-
ecules presented here for short periods should be taken 
into consideration, which minimizes this risk [56].

In general, T1–T7 hybrids present structural contribu-
tions in the form of pharmacophores that determine their 
biological activity. The carbonyl groups of the T1–T5 
structures constitute highly attractive nucleophilic hydro-
gen bond receptor regions with the N+H charged groups 
of specific residues of the Mpro SARS-CoV-2 receptor, 
such as Lys137, Asp197 and Asn238, characteristic of the 
site of activity of the drugs ANK, AZT, BRT and RDS [57]. 
However, the low susceptibility to hydrogen bonding of the 
T6 hybrid directed the ligand to a distinct region on the 

receptor, reflecting its synergistic activity associated with 
the control ligands.

Conclusions
In conclusion, the adversity surrounding the COVID-19 
pandemic has reached a global scale and, with this advance, 
there is a need for theoretical and medicinal Chemistry, as 
well pharmacological professionals to develop new drugs 
with significant anti-SARS-CoV-2 replication. The results 
presented here demonstrated that the hybrid products of 
artemisinin and thymoquinone present interaction with 
Mpro, with desirable characteristics of pharmacokinetics 
and toxicity compared to the drugs available on the mar-
ket. Thus, these molecules are promising candidates for the 
development of specific drugs against COVID-19.
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